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A model for rebound bursting in mammalian neurons
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SUMMARY

In this paper we begin by simplifying our previous model of a thalamic neuron (Rose & Hindmarsh
Proc. R. Soc. Lond. B 237, 289-312 (19895)) by removal of the A current. A Ca%*-activated K+ current,
with Ca?* entering through T channels, is then added to give a model for a class of mammalian neurons
in which the membrane potential oscillates in the subthreshold region following a hyperpolarizing
current step. The properties of the model are represented using an experimentally observable bifurcation
diagram. In the subthreshold region only three variables are required to explain the essential dynamic
properties of the cell. In this three-dimensional space the solutions tend to lie on a surface which
resembles a paraboloid. We use a simplified model of this model to explain both the dynamics of the
solutions on this surface and the form of the bifurcation diagram.

1. INTRODUCTION

We have previously discussed a model of a thalamic
neuron (Rose & Hindmarsh 1989a—¢) which
explained many of the experimental observations
that Jahnsen & Llinas (19844,b) made on thalamic
cells. These cells had the property that a depolarizing
current step, of fixed magnitude and duration, applied
to the cell in steadily hyperpolarized equilibrium, at
rest and in steadily depolarized equilibrium, produced
three distinct effects.

1. When hyperpolarized the cell responded with a
low threshold spike (LTs) whose peak exceeded
threshold to give a burst of action potentials.

2. When at rest the response was a passive
depolarization.

3. When depolarized the cell fired action potentials
repetitively (tonic firing).

In addition:

4. If the cell was hyperpolarized from rest by a
current step of sufficient magnitude and duration, it
responded with a single rebound burst on termination
of the step.

5. For a range of externally applied currents the
cell may generate a periodic LTS.

Our model explained these properties. In particular
the burst response was explained by the presence of a
low threshold transient inward Ca?* current which
was deinactivated by hyperpolarization. The existence
of this T-type current in thalamic neurons was later
confirmed by voltage clamp experiments (Coulter et
al. 1989; Crunelli et al. 1989; Hernandez-Cruz & Pape
1989).

Since that time thalamic neurons have been shown
to have other ionic currents such as a fast and a slow
A-current (Huguenard et al. 1991; Huguenard &
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Prince 1991) and a hyperpolarization activated cation
current (McCormick & Pape 1990). These ionic
currents contribute in different ways to the shape of
the LTs and the form of the pacemaker cycle when the
cell is oscillating. The simultaneous presence of the
five properties listed above does not depend on them.
Simulation models incorporating these and other ionic
currents and with improved descriptions of It have
been given by Wang et al. (1991), McCormick &
Huguenard (1992), Toth & Crunelli (1992), Lytton
& Sejnowski (1992), Wang (1994) and Destexhe &
Babloyantz (1993). The discovery of the precise roles
of each of these currents is important for the
understanding of the physiology of the cells because
they determine the frequencies of burst and tonic
firing. However, with the exception of intrinsic spindle
generation (Soltez et al. 1991; Destexhe & Babloyantz
1993; Destexhe et al. 1993) the role of these additional
currents appears to be quantitative rather than to
produce a qualitative change in the dynamics of the
cell (McCormick & Huguenard 1992).

In this paper we extend our previous model to a
class of neurons which are similar to thalamic neurons
but show more complicated rebound responses. These
include cells of the lateral habenula (LHb) nucleus
(Wilcox et al. 1988), the nucleus reticularis thalami
(nRT) (Avanzini et al. 1989; Bal & McCormick 1993)
and the inferior olivary (IO) nucleus (Llinas &
Yarom 1986; Yarom 1991). A typical example is
given by LHb neurons which rebound with three or
four bursts whose amplitude decays as the membrane
potential returns to rest. The cell may also rebound to
give continuous bursting. Inferior olivary cells give
similar decaying oscillations in the presence of
harmaline and tetrodotoxin (TTX) (Gutnick &
Yarom 1989; Yarom 1991). In the case of nRT cells
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the rebound bursts are frequently followed by a period
of tonic firing (Bal & McCormick 1993).

In this paper we show that such rebound oscilla-
tions can be produced by the addition of a Ca?*
activated K current to our previous thalamic model
(Rose & Hindmarsh 1989b,c). We assume that the
Ca?* ions enter through T channels, and refer to this
K™ current as Igc,(r). Assuming that the T channels
are located in the somatic membrane and that Ca%*
ions diffuse slowly in the cytoplasm (Llinas 1988), it
should be possible to test for the presence of Ixcy(t)
using the voltage clamp technique (see §11). As
shown below the addition of Igca(r)y produces a
change in the bifurcation diagram and thus a
qualitative change in the dynamics of the cell.

The idea that rebound oscillations might result
from the interaction of It and one or more Ca?*
activated K% currents has been suggested by the
authors of the papers on LHb, nRT and IO neurons
and has appeared in several preliminary models of
nRT neurons (Wang & Rinzel 1993; Destexhe et al.
1993). Also the presence of these currents has been
largely confirmed in the case of nRT neurons
(Avanzini et al. 1989; Bal & McCormick 1993).
However, our purpose is not simply to report the
effect of adding Ikc,(r) but to gain some under-
standing of the mechanism underlying these oscil-
lations by taking the analysis of the differential
equations further than in our previous work (Rose
& Hindmarsh 1989a—c).

The mathematical sections of the paper may be
summarized as follows. Numerical integration of the
three-dimensional system of equations (4) describing
this physiological model showed that in addition to a
stable equilibrium point (EP), at the resting potential,
the system had both a stable and an unstable limit
cycle. To understand how this physiological model
works we developed a simplified model, or ‘model of
the model’. The purpose of this was to give a simple
explanation of how the stable and unstable limit
cycles appear, how their location changes for different
external currents and how the system responds to time
varying external currents. In the following paper
(Hindmarsh & Rose 19944) we will show that the
physiological model has the property that for a range
of external currents the cell resonates to inputs at
certain frequencies. The advantage of developing the
model of the model in this paper is that it enables us to
investigate this resonant behaviour analytically. In
fact without the preliminary analysis of this paper
we would have been unaware of the possibility of
resonance in cells of this type (Hindmarsh & Rose
19944) and of its possible physiological significance
(Hindmarsh & Rose 19945).

A preliminary report of the models discussed in this
paper has already been given (Hindmarsh & Rose
1992).

2. THE SIMPLIFIED THALAMIC MODEL

In Rose & Hindmarsh (1989a—¢) we started from
the Hodgkin—Huxley equations (Hodgkin & Huxley
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1952) and the equations of Connor & Stevens (1971)
describing a fast transient outward current I,. To
these we added a further equation for the low
threshold transient calcium current It described in
the Introduction. The equations for this seven-
dimensional system are:

v = C_l{_INa — IK - [L - [A - [T + IExt}’

1

it = 7, (0) (o (0) — m),
= ) (o) — 1),
=n%Wﬂw ), (1)
— 77 () (0) — a),
b= 77 (0)(boo (o) — 0),

)(

b = 73 (0) (A (v) — hr),
where Iy, = gnam®h(v — ona), Ik = grn* (v — k), Ia =
gad®b(v —vg), It = grmy (0)hr(v —vca), and I =
g1.(v — v). Further details of these equations may be
seen in Rose & Hindmarsh (1989a—c) where, it should
be noted, we used the terms [ , g, , 5, _(v), k,, 7;, and
I instead of I, gr, mt_(v), kr, 74, and Iy, used here.

Our present interest is in the behaviour of the cell in
the subthreshold region. In this region the membrane
potential changes slowly and various approximations
are possible. For instance Wang et al. (1991) put
ga = gk = gna = 0, replacing Iy,, Ix, and Iy by
an ‘effective’ leakage current. We first discard the
A-current, I, to obtain the five dimensional system:

b=C Y Iy, — Ix — I — Iy
+ I+ 1+ 1(¢)},
i =7, (1) (Moo (0) — m),
b= 73" () (oo (v) = h),
=1, (1) (noo(v) — n),
by = 7} (0) (b, (0) = k). )

Here we have written the external current, [g,, in
the form Ig, =1Iy+ 1+ I(t) where by definition
Iy has the value —1.35puA cm™2 throughout, 7 is an
additional constant current and I(¢) a time varying
applied current such as a pulse, step or periodic
current. The reason for introducing [ will be given in
§7.

Typical voltage responses obtained by numerical
integration of equations (2) for a fixed amplitude step,
I(t), at various levels of steadily applied current,
Iy + I, are shown in figure 1d—f. Parameter values for
these equations are given in Appendix 1.

We now remove the sodium current, Iy,, by putting
&na = 0. The voltage-dependent K* current Ix is
retained, because this allows us to add fast action
potentials by reintroducing Iy,. We also find that I
plays a significant role in repolarization of the low
threshold oscillations in the model described below.
Because /i is small in the subthreshold region we do

(2)



http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

A model for rebound bursting in mammalian neurons J. L. Hindmarsh and R. M. Rose 131

()

—30 _
b
£
_s0 - A :
50—((2') (e) €3]
s L
£ i
[_____/__ '______:fi _______ \____._-'__: —
—80t — : : : : E
I , : ’ _ 1(t) L
: ' | 1(t) L L+1
| 1(t) L Io+1
Io+1

Figure 1. (a)—(c) Responses of the two-dimensional thalamic model (equations (3)) to current steps, I(¢), of

amplitude 4.12 |,1Acm_2 and 150ms duration,

at different levels of steady external current [y+ 1=

—4.12pAcm™? (a), OpAcm™2 (b) and 4.12pAcm™2 (¢). (d)—(f) Responses of the five-dimensional thalamic
model (equations (2)) to current steps, I(¢), of the same amplitude and duration, and with the same steady
external currents, Io+ I, as in (a—c). All figures obtained by numerical integration with the other parameter

values given in Appendix 1.

however make the approximation n = ny(v). This
leaves us with two equations:

b= C " {—gr(v— 1) — gx oo (v) (v — vx)
—grmy (V)hr(v —vc,) + o + 1+ 1(1)}, (3)
hr = T (hr, (v) — k).

In figure la—¢ we show voltage responses of equations
(3) to the same sequence of current steps as shown for
the five-dimensional model in figure ld—f. The
parameter values, given in Appendix 1, were chosen
so that a limit cycle is present for a range of values of
Iy + 1. As the external current is varied, the voltage
coordinate of the resting equilibrium point (EP)
changes as does the amplitude of the stable limit
cycle. These changes are shown in the bifurcation
diagram of figure 24, where for each value of the
external current, Iy + I, represented on the horizontal
axis, is shown the membrane potential of the Ep and
the maximum and minimum values of the membrane
potential around a limit cycle if present. An interesting
feature of this diagram is that as the external current
becomes increasingly negative from the bifurcation
point the amplitude of the limit cycle grows slowly at
first, where the oscillations are almost sinusoidal (figure
2b), then rapidly to give large amplitude oscillations
(figure 2¢). The reason for this is the large distortion of
the v nullcline, in the region v = —73 mV, which occurs
with decreasing external current as shown in figure 2d,e.
This is due to the comparative smallness of mp_ (v) in this
region. This transition from small amplitude oscillations
to larger oscillations as the cell is progressively
hyperpolarized has been observed in thalamic neurons
(Leresche et al. 1991, figure 2).

Phil. Trans. R. Soc. Lond. B (1994)

These results confirm that it is possible to repl. :e
our earlier three-dimensional (Rose & Hindmarsh
19894) and seven-dimensional (Rose & Hindmarsh
1989¢) models by simpler two- and five-dimensional
models.

3. THE PHYSIOLOGICAL MODEL FOR
REBOUND BURSTING

To explain the low threshold oscillations of lateral
habenula and other cells we will add a further current
to equations (3). To understand how this current will
modify the behaviour of equations (3) we examine the
nullclines of these equations for various values of
constant external current Iy + I. Figure 3a—d shows
these nullclines for Ip+71=0, —3.4, —3.7 and
—4.12pAcm™2 (these values, particularly the latter,
were chosen for illustrative purposes).

In the model described by equations (3), suppose
the system is initially at rest in the equilibrium point A
of figure 3a. If the system is hyperpolarized using a
negative step /(t) = —4.12pA cm™2 for 100 ms, then
the state of the system will change to the equilibrium
point B of figure 3d. On release of the step the state of
the system returns to the original resting equilibrium
point, without oscillation, as indicated in figure 3a.
Using the full equations (2) this return would initiate
the firing of just one rebound burst.

To generate a decaying succession of bursts, we
want a low threshold damped oscillatory return to the
resting equilibrium point. This oscillation would occur
if, as a result of both the hyperpolarization and
subsequent release, an outward current were activated
that would leave the system as though subject to a
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-30q (9) ®) ()
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Figure 2. (a) (o +1,v) bifurcation diagram of the two-dimensional simplified thalamic model (equations (3)).
Sloping line and curves on the lower left give voltage coordinates of Eps at different values of Iy + /. Stability of
these EPs is indicated as follows: long-dashed line, stable node; dotted line, stable spiral; short-dashed line,
unstable node or spiral; dot-dashed line, unstable saddle. Amplitudes of limit cycle solutions between
Iy+1~ -3 uAcm_2 and Iy + 1~ —4pA cm™? are indicated by the two solid curves leaving the line of Eps

at Iy + I ~ —3pAcm™2

(b) Small amplitude, and (¢) large amplitude limit cycle solutions of equations (3) with

Iy+1=-3.12 uAcm_2 and —3.7 A cm™? respectively. Horizontal dashed lines connect maximum and mini-
mum values of membrane potential with corresponding pairs of points on the bifurcation diagram. (d) (v,4y)
nullcline diagram and limit cycle for the small amplitude limit cycle shown in (8). (¢) (v, A1) nullcline diagram
and limit cycle for the large amplitude limit cycle shown in (¢). Other parameter values given in Appendix 1.

constant external current of, say, —3.7 uA cm~2. The
nullclines would then be as in figure 3¢ and the state of
the system would follow the limit cycle path. In reality
the outward current need not be constant. If it
decayed then the oscillations would decrease in
amplitude (figure 36) and the system would return
to the resting equilibrium point.

This outward current could be either voltage-
dependent or Ca?*-dependent. We will consider a
Ca?*-activated K* current and comment afterwards
on an alternative.

The Ca?*-activated KT current is given by:

[4

Ik ca(T) = gKCa(T) (W) (v — k),

where grcar) and Kg,) are conductivity and
dissociation constants respectively and ¢ measures
the concentration of intracellular free calcium (for
similar models, see Plant 1978; Chay & Keizer

Phil. Trans. R. Soc. Lond. B (1994)

1983; Rinzel & Lee 1986). The differential equation
for ¢ is:

¢ = —klp — kcae (= —kgrmr_(0)h1(v — vca) — kcat),

where £ and kg, are constants whose values will be
chosen following the discussion below. Later in § 11 we
will explain how these values can be obtained from
voltage clamp experiments.

This gives the following three-dimensional system:

b= C"{—gr(v— 1) — grn(v) (v — )

— 4T mTw(”)hT(U —VCa)

c
— 8KCa(T) (m) (v — vg) @)

+ L+ 1+ 1(t)},
hr =1} (hr (v) — k1),
¢ = —kgrmr (Vhr(v — vca) — kcac- J
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: stable
*limit cycle

~80 v/mV -30 -8

Figure 3. (a)-(d) (v,hT)

nullcline diagrams for the simplified
Iy+1=0pAcm™2 (@), —=3.4pAcm™2 (b), —3.7pAcm ™2

()

stable
limit cycle

=0

stable
. limit cycle

-

v/mV - 30

- 80 o/mV -3 -8

thalamic model (equations (3)) for
(¢), and —4.12 pA cm™? (d). (e)—(h) (v,kr) nullcline

diagrams for the first two of equations (4) with ¢ =¢y=0um (¢), 0.20pum (f), 0.22pm (g) and 0.25um ().
Other parameter values given in Appendix 1. See text for further explanation.

In choosing parameter values for Ixg,r) we
assume that Kgyry = 1 uM (see Chay & Keiser 1983)
and that ggga(m) = 2¢7 = 1.2mS cm™2, The effect on
the bifurcation diagram, of varying ggca(t), Will be
discussed in §6.

If we take the first two of equations (4) and give ¢
the constant value ¢y then we obtain a system similar
to that described by equations (3). Equations (3) have
a limit cycle solution when Iy + 7 = —3.7 uAcm™2 as
shown in figure 3¢. The first two of equations (4)
would have a similar limit cycle with fy+7=0
provided that we could choose ¢y so that
Ixcary = —3.7pA cm™2. This cannot be done exactly
as Igcar) is voltage dependent through the term
(v — vk ). We can see from figure 3a—d that the change
in the configuration of the v nullcline with fy + I is
most marked when v & —73mV. Thus we choose ¢; so
that Igxcyr) has the value —3.7pA cm~? when
v = —73mV. This means that ¢y is given by:

—EKCa()\ 7 1

—73 —vg) = 3.7,
Kcaer) + Co)( )

which gives ¢y = 0.22 pMm.
With this value for ¢y the first two of equations (4)
have nullclines and limit cycle as shown in figure 3g.

Phil. Trans. R. Soc. Lond. B (1994)

Similarly figure 3e, f,/ show the nullclines for the first
two of equations (4) with ¢y =0, 0.2, and 0.253 um
respectively. Note that these are not exactly the same
as figure 3a—d because of the voltage dependence of
Ixca(ry- The dotted curves in figure 3e—k will be
referred to in the next section.

We now consider the effect of the third of equations
(4). In particular we wish to see how one might
choose parameters in this equation so that it allows
the system to oscillate following a hyperpolarizing
step. With ¢y fixed at 0.22 pm the average value (I1) of
It can be estimated from the limit cycle solution of the
first two of equations (4). We now arrange that the
effect of the third of equations (4) is to give ¢ an
average value of 0.22 pM. This requires that:

—I—C@ =0.22 pm.
kCa

By choosing a value for £ to give a time constant of
decay of low threshold oscillations similar to that of
the real cell, this equation gives a value for kg,.
Although this value for g, does give the desired low
threshold oscillation, following a hyperpolarizing
pulse, we decreased the value for reasons to be given
in §6.
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An alternative to the above model could be
developed using a voltage-dependent outward cur-
rent. In the case of a voltage-dependent K+ current
there are several possible combinations of activation
and Inactivation variables that could be used. Our
investigations of these models suggest that the best
model of this type is:

p=C YL, —Ix — Iy — g,z(v — )
+ I+ 1+ 1(¢)},
hr = iy (k1 (v) = h),
=1, (20(0) — 2),

where
1

ZOO(U) N 1+ €xXp (_'}/z(v - Oz)) ’

Although these equations can give rebound oscil-
lations to a negative current step, the z variable is
also activated by a positive current step unless strict
conditions are imposed on the definition of z,, (see
Rose & Hindmarsh 19894). This means that on
termination of a positive current step the system will
also tend to oscillate. Experimentally, depolarizing
current steps applied, for instance, to LHb neurons
result in tonic firing which is not followed by
oscillations on termination of the step (Wilcox et al.
1988). As shown above our solution to this problem

v, >0, 6,<0.

(a)
stable
limit cycle
unstable
limit cycle

v/mV

—100

A model for rebound bursting in mammalian neurons

was to use a Ca?"-activated Kt current Igc,r). This
current is dependent on the entry of T-channel Ca?*,
and so positive current steps, applied to the cell at
rest, will not activate Ixg,) because I7 is largely
inactivated at rest. Consequently we are able to
obtain rebound oscillations for negative current steps
and the required form of tonic firing for positive
current steps.

A further justification for investigating the effect of
adding Jkca(r) to equations (3) comes from the
experimental results of Avanzini et al. (1989) and
Bal & McCormick (1993). They have shown that in
rat nRT neurons Ca?* entry during the LTs activates
a fast and a slow apamin-sensitive Ca?*-dependent
K* current. These outward currents cause a deep
after-hyperpolarization in nRT neurons, whose
electrophysiological properties are very similar to
those of LHb neurons. Apamin-sensitive K* currents
are known to be strongly dependent on intracellular
Ca?* (Blatz & Magleby 1987).

4. THE STATE SPACE OF THE
PHYSIOLOGICAL MODEL

Numerical integration of equations (4) with the
parameter values given in Appendix 1 and with
Iy + I = 0 show that the solutions are attracted to a
surface whose shape approximates that of a para-
boloid (see figure 44). On this paraboloid there is a

(®)
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Figure 4. (a) Attractor surface for standard three-dimensional physiological model (equations (4)) with
Ly+1= OuAcm_z, showing stable and unstable limit cycles. Also shown is state path for numerical solution
shown in (4). Note that a depolarizing current step applied at point B displaces the state to point C just below
the unstable limit cycle. (4) Numerical solution of equations (4) with Iy + 1 =0pA em™? to a hyperpolarizing
current step, I(¢), of amplitude —10 pA em™2 and 20ms in duration, followed by a depolarizing current step of
amplitude 25 pA cm ™2 and 28.5ms in duration. The time interval between the onset of the hyperpolarizing cur-
rent step and the onset of the depolarizing current step was 185 ms. (¢) Numerical solution of the six dimensional
physiological model (equations (6)) for the same external current and current steps as in (b). Other parameter
values given in Appendix 1.

Phil. Trans. R. Soc. Lond. B (1994)
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stable limit cycle and an unstable limit cycle. Near its
vertex the solutions leave the surface and approach
the stable EP.

This surface appears because if the first two of
equations (4) are integrated, with ¢ given a constant
value ¢y and Iy + I = 0, we find, for small values of ¢y,
a stable EP and, for larger values of ¢y, a stable limit
cycle as shown in figure 3¢—A. When all three
equations are integrated the value of ¢ changes and
the solution does not lie in a plane of constant ¢, (see
for instance the limit cycles shown in figure 4a). If we
look at a plane ¢ = ¢j in the state space, we can divide
it into regions where ¢ < 0 and where ¢ > 0 by the
points where ¢ = 0, that is the curve:

—kIT - kCaCO = Oa
or equivalently:
—kgrmr_(v)h1(v — vca) — kcato = 0.

These points are shown by dotted curves in figure
3¢—h. They are the intersections of the ¢ nullsurface
with the planes of constant c.

As a solution goes around the paraboloid the value
of ¢ will increase and decrease. After one circuit a net
decrease in the value of ¢ will be reflected in a
movement towards the vertex and vice versa.

An interesting test of this model is shown in figure
4b. Here a hyperpolarizing current step is applied to
give rebound into bursting that would be continuous
if no further current steps were applied. In this
example a depolarizing current step was applied late
in the positive phase of the third cycle. The evolution
of the system as a result of these steps is shown in
figure 4a. On release of the hyperpolarizing step the
state of the system is on the paraboloid just above the
stable limit cycle. During the next three oscillations
the state winds down the paraboloid towards the
stable limit cycle. In figure 4a we show the state path
beginning at a point A on the third cycle. When the
system is at the point B shown in figure 4a, the
depolarizing step displaces the state to a point C just
below the unstable limit cycle. It then winds around
the paraboloid a few more times before drifting off to
the stable resting Ep. The corresponding time course of
the membrane potential is shown in figure 45. Note
that after the depolarizing current step the oscillations
are of a smaller amplitude and a higher frequency
than the initial rebound oscillations. This experiment
has been carried out by Wilcox et al. (1988) and is
shown in figure 14 of their paper. To compare our
model with their recording we return to the complete
system of six differential equations:

v=CY—Iy, —Ix — I} — Iy — Ixca(T)
+ I+ 1+ 1(1)},
=7, (v) (Moo (v) — m),
h= 17 (0) (hoo (v) — B), (6)
i= 1, () (oo (v) — ),
by = 77 (b1, () — A1),

¢ = _kgT mr, (v)hT(v - vCa) - kCac' )
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As shown in figure 4b,¢ the main difference between
the solution of the reduced system of equations (figure
4b) and the corresponding solution of the full system
of equations (figure 4¢) is the appearance of the action
potentials in the latter. This solution of the full system
compares well with the experimental recording of
Wilcox et al. (1988). Given the complexity of this
experimental recording it would seem that the model
has captured the main features of the dynamical
system underlying the behaviour of the cell. We will,
however, suggest an improvement in § 6, based on the
voltage separation of the half activation points for my_
and kit _, following the discussion of the bifurcation
diagram.

5. THE BIFURCATION OF THE
PHYSIOLOGICAL MODEL

Figure 5a is a bifurcation diagram for the three-
dimensional system (equations (4)) with the para-
meter values given in Appendix 1. This diagram
should be compared with figure 2a because the
parameter values for I;, Ix, and It are the same in
both cases. The only difference is that Igg,T) is
present in figure 5a and absent in figure 2a. The effect
of introducing Ixc,(t) is as follows. For 7 < [; there is
a stable EP. For I} < I < I, there is an unstable Ep,
whose membrane potential is shown with a dashed
line, and a stable limit cycle. For Iy < I < I3 there is a
stable EP, an unstable limit cycle, whose maximum
and minimum membrane potentials are shown on the
dashed curves, and a stable limit cycle. We shall call
this part of the bifurcation diagram the indented part.
Finally, for I3 < [ there is only a stable Ep.

Figure 55 shows the timecourse of the membrane
potential for [y + 7 = 0, following a hyperpolarizing
step of 7(¢) = —10 pA cm™2. The effect of this current
step is to switch the system from its stable EP to a
stable limit cycle. The correspondence between the
membrane potential of the EP and the maximum and
minimum potentials of the limit cycle for Iy + 7 = 0 is
indicated by the dashed lines connecting figure 5a,b.
Figure 5¢ shows the timecourse of the membrane
potential for the stable limit cycle when the external
current, Iy + 1, is —2.6 pA cm~2. Figure 5d shows the
damped oscillation which results, following a hyper-
polarizing step of 7(t) = —10pAcm™2, when the
external current, Iy + 7 is 0.6 pA cm™2.

This set of responses together with those of figure 4
are consistent with the experimental recordings of
LHb neurons (Wilcox et al. 1988) with the possible
exception of the case I} < I < I where there is no
stable EP and the system is in a permanent state of low
threshold oscillation. This possible defect will be
discussed in the next section. In addition the six
dimensional model (equations (6)) fires tonically to a
depolarizing current step applied when the cell is at
rest (not shown). This is also found experimentally.

6. VARIATION OF PARAMETER VALUES

In Figure 6 we show the effect that varying the
parameters ggca(r) and kg, has on the bifurcation
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Figure 5. (a) (Io + 1,v) bifurcation diagram of the three-dimensional physiological model (equations (4)). As in
figure 2a sloping line gives coordinates of Eps whose stability is indicated as follows: solid line, stable; dotted line,
stable with eigenvalues of form —a=+:8, —y; dashed-line, unstable. Bifurcation points occur at Iy +1 = Iy + I,
Iy + 1y and Iy + I3 pA cm™2. Unstable limit cycle solutions are indicated by the dashed curves leaving the line of
EPs at Iy+ I, and terminating at Iy -+ I3. Stable limit cycle solutions exist between Iy+1; and Iy + I3 as
indicated by the outer solid curves. (4) Rebound oscillations of three-dimensional physiological model (equations
(4)) to a hyperpolarizing current step of —10 pA cm™? amplitude and 20 ms in duration with Iy 4+ I = 0 pA cm ™2,
Horizontal dashed lines connect maximum and minimum values of membrane potential with corresonding pair
of points on the bifurcation diagram. (¢) Stable limit cycle solution of equations (4) with Iy 4+ I = —2.6 pA cm™2.
(d) Damped oscillatory solution of equations (4) following a hyperpolarizing current step of amplitude
—10pA cm™2 and 20 ms in duration with Iy +1=0.6pA cm™2. Other parameter values given in Appendix 1.

diagram for equations (4). The columns have kg,
varying from 0.060ms™! in the left-hand column to
0.020ms™! in the right-hand column and the rows
have ggca(r) varying from 0.6 mS cm™? at the top
to 1.8mScm™2 at the bottom. The middle diagram,
figure 6e¢, is the same as figure 5a with kg, =
0.044ms™! and grca(r) = 1.2mS em™2. Features to
note are: (i) the indentation increases as k¢, decreases;
(ii) the indentation is similar in figure 64,d, f and also
for figure 6e,g; (iii) in figure 6a the bifurcation is
supercritical with the result that for a small range of
external current there are two stable limit cycles
present. In all other cases the bifurcation is subcritical.

In §3 the reason for choosing a decreased value of
kca was to increase the range of values of the external
current for which the unstable limit cycle was present,
that is, to increase the indentation.

A more significant change in the bifurcation
diagram comes from varying the separation between
the half activation points 0, and ;.. In the right-
hand column of figure 7 these half activation points

Phil. Trans. R. Soc. Lond. B (1994)

are as in equations (4). In the third column their
separation has been increased by 3.4mV by displac-
ing them by equal amounts (v, =1.7mV) in
opposite directions. In the first and second columns
their separation has been increased to 6 mV (v, =
83mV: first column) and 4mV (v, = 2mV: second
column) in a similar fashion. We will refer to these
models, and their bifurcation diagrams, as Type A
(left-hand column), Type B (second column), Type C
(third column), and Type D (right-hand column).

For Type A the bifurcation diagram consists
entirely of stable Eps. Nonetheless the system responds
to a hyperpolarizing step with a gradually decaying
low threshold oscillation (figure 7¢). This happens
when the external current, 7+ Iy, is —1pA cm™2
which is in the range of external currents which, in the
cases of the second and third columns, allow stable
limit cycles.

For Type B all the Eps are stable and there are
no Hopf bifurcations. There are stable limit cycles
present for a range of external current values. In this
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Figure 6. Bifurcation diagrams for equations (4) for different values of k¢, and ggca(r). Stability of limit cycle
solutions and EP is as indicated in figure 5. Values for (kc, (in ms_l), gKCa(T) (In mS cm_z)) are as follows: (a)
(0.044, 0.6), (b) (0.02, 0.6), (¢) (0.06, 1.2), (d) (0.044, 1.2), (¢) (0.02, 1.2), (f) (0.06, 1.8), (g) (0.044, 1.8).

Other parameter values given in Appendix 1.

range a hyperpolarizing current step can drive the
system into permanent oscillation (figure 7). Outside
this range we can obtain decaying oscillations (figure
7f) similar to those of figure 7e.

For Type C the bifurcation diagram has both stable
and unstable Eps and can show decaying oscillations
(figure 7g) or oscillations around an unstable EP
(figure 7/). Because the bifurcation diagram is
indented on both sides, the system can also give
sustained oscillations following a hyperpolarizing
pulse at two different levels of external current
(figure 7j,n).

For Type D the bifurcation diagram includes
unstable Eps and the responses are as described in
figure 5. This means that the system can show either
decaying oscillations (figure 7#), sustained oscillations
following a hyperpolarizing pulse (figure 7k) or
oscillations around an unstable Ep (figure 7m).

This classification of bifurcation diagrams is useful
in relating the physiological model to experimental
observations. In the presence of tetrodotoxin (TTX)
and harmaline IO cells show rebound oscillations of
Type A (Yarom 1991, figure Al). In § 10 we will show
that rat nRT cells (Bal & McCormick 1993) may be
of Types A or B. In LHb neurons the more typical
rebound response is of Type A, but Type B also occurs
(Wilcox et al. 1988, figures 13 and 14). In the third of
this series of papers (Hindmarsh & Rose 19945) we
will show that by decreasing £ and kg, it is possible to
cause a cyclical movement around the left hand end of

Phil. Trans. R. Soc. Lond. B (1994)

a Type C bifurcation diagram. This gives rise to a
type of spindling which is similar to that recorded
from ferret nRT neurons (von Krosigk et al. 1993). In
Hindmarsh & Rose (19944) we will also show that
spindling in cat Tc cells could be explained by a model
in which cyclical movement occurs around a Type D
bifurcation diagram.

7. A MODEL OF THE TYPE D
PHYSIOLOGICAL MODEL

In this section we will discuss a simplified model of the
physiological model of Type D. All the bifurcation
diagrams shown in this paper are experimentally
observable and have one bifurcation parameter, the
external current. To describe the distinctions between
Types A, B, C, and D a second bifurcation parameter,
Vseps Would be required. Although it might be
desirable to have a simplified model of all four
types, with two bifurcation parameters, we take a
simpler approach and just choose one type. The
reasons for choosing Type D are that it has a more
familiar bifurcation diagram with a more varied
structure, it has small unstable limit cycles, which
suggest and simplify the discussion of resonance
(Hindmarsh & Rose 19944), and it suggests a model
for intrinsic spindle generation (Hindmarsh & Rose
19945).

The reason for wanting a simplified model is to
provide a clearer picture of how the original model
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Figure 7. Bifurcation diagrams and responses to hyperpolarizing current steps (of —10pA cm™2 amplitude and
20ms in duration) for equations (4) as the separation between the half activation points 6,,, and 6, is varied.
Stability of limit cycle solutions and Eps is as indicated in figure 5. (¢) Type A bifurcation diagram with
Vsep = 3mV. All Eps are stable and the system responds, to a hyperpolarizing current step, with a decaying
oscillation as shown in (¢) where Iy +7 = —1pA cm™2, (6) Type B bifurcation diagram with v,, =2mV. All eps
are stable and the system may respond, to a hyperpolarizing current step, with either, a decaying oscillation as
shown in (f) where [y +7=0pA cm™2, or a sustained oscillation as shown in (1) where Iy +1= -2 pAcm™2
(¢) Type G bifurcation diagram with v,, = 1.7mV. Both stable and unstable Eps are present. The system may
respond to a hyperpolarizing current step, with either, a decaying oscillation as shown in (g) where
Iy+1=03pA cm 2, a sustained oscillation as shown in (j) where Iy+1=—1pA cm™2 or a sustained oscil-
lation as shown in (n) where Iy + = —2.7pAcm™2. For a range of external currents the cell also has permanent
oscillations around an unstable EP as shown in ({) with Iy + 1 = —2pA cm™2, (d) Type D bifurcation diagram
with v, = 0mV. Both stable and unstable Eps are present. As in figure 5 the system may respond, to a hyper-
polarizing current step, with either, a decaying oscillation as shown in (%) where Iy + 1 = 0.4uAcm_2, or a
sustained oscillation as shown in (k) where [y + 1= —1pA cm™2, For a range of external currents the cell also
has permanent oscillations around an unstable EP as shown in (m) with Iy +7 = —2pA cm™2. Other parameter
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works, for example how it responds to current steps.
In equations (4) the time constants of the At and ¢
equations are similar. This makes the analysis of the
model more difficult that it would be if, for instance,
one of them was much slower than the other. Our
approach is to construct a qualitatively similar system.
This will concentrate on the structure of the
dynamical system that we think is responsible for
these low threshold oscillations. To simplify the
discussion we define the vector v by:

so that equations (4) may be written as:

v =F(2) +f(1),

Phil. Trans. R. Soc. Lond. B (1994)

where f(¢) represents the variable external current so
that

I+1(t)

fo=ctf o |,
0

and where F(v) represents the remaining terms on the
right hand side of equations (4) including the constant
external term Ij.

To improve the agreement between the model of
the model and the physiological model we have
chosen Iy = —1.35pAcm™2 so that the EP (when
I+1(t) =0) is close to the bifurcation point labelled
Ip+ I, in figure 5a. Let this EP be at vy so that
F(’Uo) = 0. Put:

w=uv — v, (8)
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and equations (7) become:
w =120 =F(v)+f(),

= F(vy +w) +£(1),

= Aw + H(w) + f(¢),
where A = DF(vy) is the linear approximation matrix
and H(w) are the higher order terms. The matrix 4
has one real eigenvalue —y and a complex conjugate
pair —a£:8, where a, B and y are positive. Now

transform to a real canonical form of A using the
transformation T':

Tw = TAT ' Tw + TH(T " Tuw) + Tf (),

or
x=A,x+ H.(x)+ Tf(¢),

where

x=Tw, (9)
and A, is a real canonical form of A and

H,(x) = TH(T 'x). This can be written as:

k= —ax+ By + Ha(x,y,2) + Tull +1(t)),
§=—Bx—ay+ Hp(x,y,2) + Tl + 1(1)), (10)
z=—yz+ Hg(x,y,z) + Tar (I + I(¢)).

Our simplified model of equations (10) is obtained
by replacing the higher order terms H, so that these
equations become:

i = —ax+ By — a(a(x® + y*) — bz)x
+ T11(1+I(t))a
= —Bx —ay — a(a(x* +y*) - bz)y

+ Tor (1 + 1(2)),

= —yz+y(e(® + %) — d(x® +¢*)?)

+ Tai (1 +1(2)),

where the values of the positive constants a, b, ¢, d are
given in Appendix 2. The reasons for choosing these
values are given in §9. To see how these equations
approximate the previous equations we consider the
case where I + I(t) = 0. Using polar coordinates (7, 6)
instead of (x,y), equations (11) become:

(11)

/

i =—ar(l +ar® — bz),

o=, (12)
t=—y(z - +dr*).

Consider the first of equations (12) in which z may be
regarded as a parameter. For z < 1/b this equation
has a stable Ep at » = 0, whereas for z > 1/b it has a
stable EP at r = 4/[(bz — 1)/a] and an unstable EP at
r = 0. Combine this equation for 7 with the equation
for 6, and these stable equilibrium solutions become a
stable EP at the origin and a stable limit cycle
respectively. They will correspond to the resting Ep
shown in figure 4a and the stable limit cycle shown in
figure 4a. Clearly z is a variable playing a role similar
to that of ¢ in equations (4).

Phil. Trans. R. Soc. Lond. B (1994)

The solutions of the three-dimensional system of
equations (12) may now be described. First note that
the simple form of the equation for § means that
these solutions have constant angular velocity around
the cylindrical axis r=0. This means that the
behaviour of the solutions is determined by the two-
dimensional subsystem consisting of the equations for 7
and z.

The nullclines for these equations are shown in
figure 84 which also shows their intersections at the
Eps L, M and H. The lower Ep, L, at the origin is
stable and corresponds to the stable Ep of the three-
dimensional system. The middle and higher ps, M
and H, are unstable and stable respectively and
correspond to an unstable limit cycle and stable limit
cycle of the three-dimensional system.

Next consider the case where I # 0 and I(t) = 0.
The effect of non-zero I in equations (11) is to
displace their ep from O, when I =0, to x(I). A first
approximation to x(/) is:

(1) (aT11 + BTo1)/(a® + B?)
y(I) | =1| (=BT +aTy)/(a®+4%) |- (13)
2(I) Ty /[y

Once again we change coordinates in order to move
the EP back to O. This time by the substitution:

x=x(I)+ &, (14)

in equations (11). We now note that a may be made
as small as we wish by choosing I so that the EP is
close to the bifurcation point, / may be restricted to
small values and v is smaller than B. In addition to
these small terms we see from equations (13) that x(7)
and y(I) are also small but z() is not.

Therefore having made the substitution (14) we
disregard all terms with products of two or more of
these small terms. In this way equations (11) become:

#=—ai+pj— a(a® +7°) — b(z+ ITa/y))F,
= —px — aj — a(a(@ +7°) — b(Z + ITn /)7,
—yz+y(c(@ +7%) — dF +77)P).

<.

Il

(15)

Using polar coordinates 7, 8, instead of %, 7, equations
(15) become:

7= —ar(l +a” — b(z + ITs1/y)),
_.'y(z — 672 + d74)

-
Il

Wi
Il

Equations (16) are the same as equations (12), except
for the appearance of the term I73/y, and the
behaviour of their solutions may be discussed, as
above, by reference to the two-dimensional subsystem
consisting of the equations for 7 and z. This subsystem
is:

7= —ar(l +ar> — b(z + ITs, /y)),
(17)

Z=—y(z - +d7*),
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Figure 8. (a) ({,v — vg) bifurcation diagram calculated numerically for the three-dimensional physiological model
(equations (4)). This diagram is the same as figure 5a¢ with the axes repositioned so that the origin corresponds
to the point (ly +I,») = (~1.35pAcm ™2, —63.26mV) in figure 5a. There are three bifurcation points at I = I,
Iy and I3. (b) (I,v — vg) bifurcation diagram of the model of the model calculated analytically as described in
§9. The bifurcation points at Iy and I3 occur at similar values to Iy and I3 in (a). In (a) and (4) stability of EPs
and limit cycles indicated by: dashed line, unstable; solid line, stable. (¢)—(¢) Nullcline diagrams for the model of
the model calculated using equations (18) for (¢) /= —1pAcm™2, (d) I =0pAcm ™ and (¢) I =2pAcm 2
Parameter values for the model of the model are given in Appendix 2.

and the 7 and Z nullclines for these equations are:

z=(14a")/b—ITy/y, (19)

z=c" —dr,

respectively.

Clearly the position of the 7 nullcline will change
with J and the direction of this change will depend on
the sign of 73;. For the transformation T we have
used (see Appendix 2) this sign is negative.

Thus the effect of increasing / is to translate the 7
nullcline to the right. Figure 6¢—¢ shows the nullclines
in the (z,7) plane for the cases (¢c) [ <1Iy, (d) I =0
and (¢) I > I5. The equilibrium points, lower, middle
and higher, are labelled L, M and H. In figure 84
L and H are stable and M is unstable. In figure 8¢ L
is unstable and H is stable. In figure 8¢ L is stable.

8. SWITCHING BETWEEN THE er AND THE
LIMIT CYCLE

We will now discuss how the switching between a
stable EP and a stable limit cycle by means of positive
and negative applied currents steps, as shown in figure
45 is explained by the model of the model. Note that

Phil. Trans. R. Soc. Lond. B (1994)

this comparison is only qualitative. We describe the
changes in the configuration of the nullclines of the
model of the model as the bifurcation points at I = I,
I5 and I3 are crossed when /(¢) is changed. We do not
match the values of I or of /(¢) when making the
comparison.

Suppose the system, with /=0 and /(¢) =0 is in
equilibrium at point L of figure 84. If a negative
current step, (¢) <O is applied, then the nullcline
diagram changes from figure 84 to figure 8¢ and the
state of the system changes to the EP at H in figure 8¢.
This corresponds to a stable limit cycle for the three-
dimensional system. If the current step is now
terminated, so I(¢) = 0, the system changes its state
to the stable Ep at H in figure 84. Thus the effect of a
sufficiently long and prolonged negative current step
is to switch the three-dimensional system from its
stable EP to its stable limit cycle.

The physiological model would behave similarly to
this if I(¢) were sufficiently prolonged so that the
external current was such that I} <1+ I(t) < . In
this case oscillations would build up after a delay
following the application of a current step. In the
example given in figure 44, the negative change in
I(t) is larger in amplitude so that 7 + I(¢) < I;, and
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the membrane potential is stable during the appli-
cation of the current step. This does not happen with
the model of the model because it does not have a
stable EP for negative values of /, as will be seen in the
next section (compare figures 6a and 66).

Now suppose the system, with / =0 and I(¢) = 0, is
in the P at H of figure 84. If a positive current step is
applied then the nullcline diagram changes from
figure 84 to figure 8¢ and the state of the system
changes to the stable EP at L in figure 8¢. If the current
step is now terminated the system changes its state to
the stable EP at L in figure 84. Thus the effect of a
sufficiently long and prolonged positive current step is
to switch the three-dimensional system from its stable
limit cycle to its stable EP.

This explains, qualitatively at least, why a positive
current step applied to the physiological model, as
shown in figure 46, had the effect of terminating the
limit cycle.

We have considered the case which allows a limit
cycle when there is no external current. From the
observations of Wilcox et al. (1988), this case is found
less commonly than cells which show a damped
oscillation of three to four cycles. An interesting
feature predicted by the model of the model occurs
when the parameters are such that the limit cycle only
just fails to appear. In saying that the limit cycle only
just fails to appear we mean that the 7 and Z
nullclines, that are shown intersecting at M and H
in figure 84, no longer intersect but still lie close
together (similar to figure 8¢). A consequence of this is
that following a negative current step the system is not
held in a limit cycle but returns to the stable Ep. In so
doing the phase point representing the state of the
system returns through the narrow channel between
the nullclines. Being close to both nullclines its
movement is slow, which means that the oscillation
of the three-dimensional system is slow to decay.

9. THE BIFURCATION DIAGRAM

We now choose the values of a, b, ¢, d so that the
bifurcation diagram predicted by the model of the
model is in at least approximate agreement with that
of the physiological model.

To obtain the bifurcation diagram, from the model
of the model, we need, for each value of I, the (z,7)
coordinates of the EPs of equations (17). These are
given by the points of intersection of the nullclines
whose equations are (18). Therefore the 7 coordinates
of these EPs satisfy:

bd7* + (a — be)7® + (1 — 16 Tqy /) = 0. (19)

The number of positive real roots will depend on 1.
For values of I, for which there are two positive roots,
these roots are given by

. \/ (bc —a++/((a— bc);; 4bd(1 — Ib T, /'y)))

(20)
and the corresponding values of z by:

7, = 72 — d7i. (21)

Phil. Trans. R. Soc. Lond. B (1994)

For the stable limit cycle through (7,,z,) the
corresponding membrane potential, is obtained from
transformations (8), (9), (14), which give:

v=vg+tw=vy+T *x=vy+ T (x(I) + &),
and so the membrane potential is:
v=vo+ Tir'(x(1) +3) + Tiz' (y(1) +7)

+ T3 ' (2(I) +2). (22)

Because T5' =0 and, for the limit cycle through
(74,z), X(=7cosf) varies between 7, and —7,, we
find that the maximum and minimum values for the
membrane potential are given by:

tmax = 20+ Ty’ (8(1) +7.) + Ty’ (1) +24),

vmin = 00+ i1 (x(1) = 74) + T15' (2(1) + 24). }
(23)

By subtraction equations (23) give:

Umax ~ Umin = 271 7.

Similarly for the unstable limit cycle through (7_,z_)
we have:

—1_
Umax — Umin = 27—'11 r_.

From the bifurcation diagram of the physiological
model, shown in figure 8a, we see that the left
hand bifurcation point occurs when [=1I,=
—0.074pAcm™2. At this point 7. =0 and so
1— IAbT31/'y =0 glVlng b= ‘)//(IAT31) =~ 450.

For the stable limit cycle, at the same current value,
we have:

= Vmin)2 = 2711 7y = 2T17"/[(bc — a) / (bd)).
(24)

At the other end of the bifurcation diagram, where

(vmax

the stable and wunstable limit cycles meet,
I=1I3=15pAcm™2 At this point 7, = 7_ so:
(a — bo)® = 4bd(1 — Iz Ty /), (25)
and:
(vmax - vmin)3 =2 T1—117+ =2 Tl—ll\/[(bc - a)/(de)]
(26)
From figure 84 we obtain:
(Vmax — Umin)2 = 40.5mV,
(27)

(vmax - vmin)3 =27.7mV.

From (24), (25), (27) and using the value found above
for b, we obtain:

64( T4 (1 — I
PILCCITRN 3177;31/')’)%1.3)(106'
b(vmax - Umin)2

Also from (24) and (26) we obtain:
(vmax - Umin)Z = (Umax - Umin)3\/§7

a prediction which is correct to within 2mV. Finally
from (25), and the values found above for b and d, we
have:

a — be = 230000. (28)
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In theory it should be possible to obtain the value of ¢
from the equation:

Umax + Umin — 2 Tlgl(z(l) + Z+)a

obtained from adding equations (23), and using (13)
and (21). But the quantity v, + vy, Is near zero and
sensitive to the values of v,,, and vy;,. Thus small
departures in the values of v,,, and v, from the
idealized behaviour assumed for the model of the
model can produce a large change in the value of ¢
and also of ¢ which is then obtained using (28).

We need an alternative way to find the value of ¢.
The following method is inspired by the voltage clamp
technique.

Suppose that, for the system of equations (12), the
value of r were fixed at 7/, then the value of z would
change according to:

z=—y(z— or'? + a'7/4), (29)

which means that z(¢) — ¢r’2 +dr'* as ¢t — co. By
observing this limiting value of z(¢) for various values
of r/ we can estimate the value of c.

The way we do this is to take the initial state:

and then use the transformations (8) and (9) to find
the corresponding initial state:

v =vy+w=1vy+ T %,

of equations (4). We then integrate equations (4)
forward through one time step to obtain the later state
v”. This is transformed back via transformations (8)
and (9) to the corresponding state:

x//

* =T —v) = |
Z//

If we define 7" = \/[(x"2 + y"?)] then in general we
will find that r” # 7’ and the new state does not lie on
the cylinder r =r'. We now apply the (clamping)
constraint, that it does lie on this cylinder, by
changing (x",y"”,z") to ("r'/r",y"r'[r",2"). Con-
tinuing this process we can find the limiting value
of z for r =7'. Using (29) and then (28) we obtain
¢ = 2000 and a = 670000.

Using these values for a, 4, ¢ and d the bifurcation
diagram for the model of the model is as shown in
figure 85. This should be compared with the
bifurcation diagram for the physiological model
shown in figure 8a. Although the asymmetry of the
bifurcation diagram of the model of the model is in the
wrong direction and there is no bifurcation point at /;
this diagram has two important features. It is a good
approximation near the bifurcation point at I and its
other bifurcation point is close to f3. The first of these
features will be important in the following paper
(Hindmarsh & Rose 1994a) and the second in the
final paper (Hindmarsh & Rose 19945).

Phil. Trans. R. Soc. Lond. B (1994)

10. COMPARISON WITH OTHER MODELS

In the above physiological model of §3 we used a
comparatively simple description of /. We now show
that similar conclusions are reached if we add Ixc,(r)
to more detailed models such as those of Wang (1994)
and Wang et al. (1991) Modification of these models
enables us to predict the result of voltage clamp
experiments more accurately.

First we will describe a four-dimensional model
based on our original thalamic model (Rose &
Hindmarsh 1989a—¢) and the work of Wang (1994).
We start with equations (1) and discard the A4-
current (see §1) but this time retain the fast sodium
current Iy, = gnam3h(v — vy,). In our thalamic
model (Rose & Hindmarsh 1989a—¢) we approxi-
mated the sodium inactivation variable £ by
0.85—3n* (in the case where Iy =0), and the
activation variable m by my. We also added a
persistent sodium current Iy,p = gnap"Nap, (v — UNa)
(which we wrote as I, = gg, 5, (v — vn,)). Including
Iy, with this approximation for £, gives us a system
of equations:

V= C_l{‘—INa - IK - IL - IT - INaP + IExt}>
i= 1, (1) (noo(v) — ),

hy = T}Z_Tl(/lTw(U) —ht),

(30)
where Iy, = gnamio (0)(0.85 — 3n*) (v — vn,), Ik =
gknt(v—ok),  Ip=grmr (Whr(v—ve), L=

gL(U_ vL)a and INaP =gNaPmNaPoo(U _UNa)' Although
we could use these equations we prefer to work
from equations of Wang (1994) which more
accurately reflect the experimental data. Wang’s
equations are:

b=C Iy, — Ix — I — It — Iy,p
— Iy + I + 1)},

= umy (0) (noo(v) — 1), (31)

b = bp, iy (0) (b, (v) = ),

Tt = Py Ty (0) sz (v) — migg), J

where INa = gNamgo(v)(085 - n)(v - UNa): IK = gK”4
(v=vx), It =grmy_(0)hr(v —vca), I = gn(v— o),
Iy = gumy(v —vn), Inap = gNapMRap, (v — 0Na) and
¢, bu, and ¢, are temperature factors which scale
the time constants of n, A and my respectively.

The main differences, apart from a more informed
choice of parameter values, are that the sodium
inactivation variable # is approximated by 0.85 — n,
the T-current activation variable my_(v) appears as
m}_(v), the time constant for the T-current inactiva-
tion variable is voltage dependent and there is an
additional current /y. These changes were based on
voltage clamp experiments published after our
thalamic model was first described.

Removing iy and adding Igcar) gives us the
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four-dimensional system of equations:
b=C "Iy —Ig — Iy — It — Inzp )
— Ixca(ry + Toxe + 1)},
it = i (2) (o (2) = ), > (32)

ht = $py i (0) (k1. () — hr),

c= —kIT - kcac.

7

To confirm the similarity between the solutions of
these equations and those of the three-dimensional
model of §3 we repeat the experiment described
in figure 4. Starting with the system at rest a
hyperpolarizing current pulse drives the system into
continuous bursting which may be terminated by
applying a depolarizing current pulse. The very
similar result in the present case is shown in figure
9a. In figure 95 we show an example of a prediction of
a voltage clamp experiment using this model in which
the voltage is stepped from a holding potential of
—90mV to —40mV. The cell has been treated with
TTX (gna=4gnap = OpAcm™2) and the clamp
current is leak subtracted. For purposes of compari-
son with real cells we have added a differential
equation for my (see Appendix 3). The total current
consists of three components, Ix (shown dotted), It

and Igg,T)- Note that the total current has both
inward and outward components. Subtracting Ig
from the total current we obtain It + Igc,(t) shown as
the solid curve in figure 9¢. If all K* currents are
blocked we obtain the same timecourse of It (figure
9¢, lower dotted curve). Subtraction of It from the
current shown by the solid curve in figure 9¢ gives
Ixca(ry (figure 9¢, upper dotted curve). In figure 94,
It and Igcyr) are redrawn and the maximum value
of Igca(t) is labelled 7;. The value of It when Igcy(t)
has this maximum value is labelled I;. By measure-
ment of I; and I, together with the time constant of
decay of Igcay) we can deduce the value of k¢, as
explained in § 11 below.

In figure 10, which may be compared to figure 7,
the columns correspond to different values of the
separation between the half activation points, 6,,, and
6., of mt and 1. The top row shows the bifurcation
diagrams of Types A, B and C for the system in the
case gn, = 0 and gn,p = 0. To look for the existence of
one of these bifurcation diagrams experimentally the
following procedure should be adopted. Block the
sodium currents with TTX. Then for each value of
the external current (horizontal axis) determine
whether or not the cell has a resting potential
(stable EP). Next, by applying current pulses of
varying magnitudes, determine whether or not the
cell has any sustained oscillations. The magnitude of

S
S
~
k=)
-80 o
. ﬂ =
L
1) I(t)
(®) 1
Ik + Ir + Ixca(r) KCa(T) Ikca(r)
T 50 © / It + Ixca(r) (@) / I
§ “.'E 20 s « 20 I//
S0 20 T 50 T
3 i SN 3 : I\
& \g Y Ir A e I
-50 & ; i N
100ms ~ i oI
-100 -100
-40 -40
> N~ N .
g _! § J g —J
~ S~ ~
S S s
-90 -90 -90

Figure 9. (a) Numerical solution of equations (32) with Iy, = 1.5pA cm™2. A hyperpolarizing current step, I(¢),
of amplitude —3 pA em™? and 20 ms in duration, is followed by a depolarizing current step, I(¢), of amplitude
8uA cm™2 and 15ms in duration. The time interval between the onset of the hyperpolarizing current step and
the onset of the depolarizing current step was 175ms. (6)—(d) Analysis of voltage clamp experiment for the
model described by equations (32) with a differential equation for my added (see Appendix 3). (b) For a voltage
clamp step from —90mV to —40mV in the presence of TTX (gn., = gnap = 0mS cm_z), the clamp current
(solid curve) consists of Ix + It + Ixca(t) when the leakage current, I1, is subtracted. Dotted curve shows time-
course of Ix. (¢) Subtraction of Ix from the current trace shown in (4) gives the clamp current for It + Ik ca(T)
(solid curve). Also shown separately are I1 and Igcyer) (dotted curves). (d) Measurement of /; and I, from the
clamp currents for It and Iggy(t) (dotted curves). See §11 for calculations involving I; and I;. Parameter values

given in Appendix 3.
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Figure 10. Bifurcation diagrams and responses to current ramps for equations (32) as the separation between the half
activation points 8, and 6, is varied. Bifurcation diagrams arc plotted for a cell treated with TTX
(gNa = gnap = 0mScm™2). Stability of limit cycle solutions and Eps is as indicated in figure 5 except that Eps are
simply indicated as stable (solid curve) or unstable (dashed curve). (a) Type A bifurcation diagram with vy, = 2mV.
(6) Type B bifurcation diagram with v, = 1 mV. (¢) Type G bifurcation diagram with v, = 0mV. (d) to (f)
Responses to a fast current ramp of equations (32) (no TTX) for cells whose bifurcation diagrams (with TTX) are as
shown in (a—¢). The current rises from I, = —3 pA em™? to Igy = OpAcm™ in 150 ms and is then maintained.
(g—1) Responses to a slow current ramp of equations (32) (no TTX) for cells whose bifurcation diagrams (with TTX)
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are as shown in (a—c). The current rises from [y, = —3 l,LAcm_2

to g = 4pAcm 2 in 10s and then falls to

Igy = —3pA cm™? in the next 10s. Parameter values given in Appendix 3.

the resting potential (if any) and the maximum and
minimum potentials of these oscillation (if any) are
then plotted (vertical axis). Note however that only
the solid curves are determined by this procedure.

Two further experimental predictions are shown in
figure 10. These serve to distinguish between the cases
described in the three columns. In the third row figure
10g—¢ shows the effect of applying a slow rising and
falling current ramp to each of the three cases. As would
be expected, from the bifurcation diagrams of figures 10a
and b, a slowly changing current results in a slowly
changing resting potential with the exception of the
tonic firing at the peak of the ramp. The presence of
unstable Eps in the (asymmetric) bifurcation diagram
figure 10¢ results in asymmetric bursting on the rise and
fall as shown in figure 10z. Thus the slow ramp serves to
distinguish the first two columns from the third.

The second row, figure 10d—f, shows the effect of
applying a current which rises rapidly until the first
low threshold spike is fired at which point it is held
constant. This distinguishes the first column from the
second and third because the low threshold oscillation

Phil. Trans. R. Soc. Lond. B (1994)

in the first column is not sustained. This is as expected
from the bifurcation diagram of figure 10a which
shows no stable limit cycles.

Guided by the results of figure 10 we are able to
relate the model given by equations (32) to the firing
patterns of nRT cells as described by Bal &
McCormick (1993). We chose a separation, between
the half activation points 8, of my and 6, of A, that
was intermediate between the separations chosen for
the first and second columns of figure 10. We also
lowered the half activation point of my,p by 7mV and
increased gg from 15mScm™2 to 25 mS cm™2,

With these changes this four-dimensional model
responds in a similar way to the observations shown in
figure 3 of Bal & McCormick (1993). As the background
current is increased the decay takes longer and the burst
frequency increases until a point is reached where the
rebound bursting gives way to a tonic tail of single spike
activity terminated by a damped oscillatory return to a
stable P (figure 11c—f).

In the presence of TTX (gn, = gnap = 0) sustained
oscillations occur for a small range of external currents
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and, as shown in figure lla, the corresponding
bifurcation diagram is of Type B, despite the fact
that the full system does not show sustained oscil-
lations. Note that a reduction of the separation (vyp)
of about 1mV is sufficient produce a Type C
bifurcation diagram (figure 115) suggesting that cells
of Type C could be present in the reticularis nucleus.
This possibility will be explored further in the final
paper (Hindmarsh & Rose 19945).

Finally we report the effect of adding Jx and
Ixcacry to the model of Wang et al. (1991). In this
model the inactivation gate for Iy is described by a
two step kinetic scheme in order to account for slow
recovery from inactivation. Our purpose is to show
that the mechanism we have proposed for rebound
low threshold oscillations will still operate with this slow
recovery from inactivation. The equations for this
modification of the model of Wang et al. (1991) are:

b= C_l{—]T —Ix — I, — Ixcaer) + Toxi)s W

iy = Ty (v) (mr (v) — mr),

h=ay(1—h—d) —Bih, (33)
d=Bo(1 —h—d) — ash,
¢ = —kIp — kg, )
(@)
230 -~
_60 -
S
S L
90
Igze/uAem=2
-|2 T (I) T ; T ml
®)
-30
% —

v/mV
)
(=3
o
T
_
—~
-
\
<

Igei/pAem—2
T T T T T T

-2 0 2

4
1

where It = grm% h(v — v, ). Further details are given
in Appendix 4.

In figure 12 we see that the bifurcation diagram
(figure 12a) is similar to that of our original model as
is the rebound bursting from a hyperpolarizing step
(figure 126). In figure 12¢—e we repeat the voltage
clamp experiment, shown previously in figure 95—d.
Comparing this (figure 124) with our previous model
(figure 9¢) we note that the slow decay of It reduces
the outward phase of the combined current. Thus
Ixca(r) appears, in the outward phase, as a small
current even though it has made a significant change
to the bifurcation diagram.

11. ANALYSIS OF THE VOLTAGE CLAMP

In this section we show how the parameters £ and ¢,
of equations (32) and (33) can be measured from the
voltage clamp experiments shown in figures 95 and
12¢. At this stage the analysis does not take into
account other voltage- or calcium-dependent currents
(e.g. Pennefather et al. 1985) which might be present
in the real cell.

The timecourses of It and Igcyr) shown in
figure 9d may be obtained analytically as follows.
The timecourse of the current It depends on the

©
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Figure 11. Model of nRT cell with parameter values given in Appendix 3. (a) Bifurcation diagram for the cell
shown in (¢)—(f) treated with TTX (gn, = gnaop = 0mS cm—z). Here vy, = 1.45mV and the stability of limit
cycle solutions and EPs is as indicated in figure 10. () Bifurcation diagram for the cell having the same
parameter values as the cell shown in (a) except that v, =0.45mV. (¢c)—(f) Numerical solution of equations
(32) (no TTX) for Iy, = 0.5pAcm ™2 in (¢), OpAcm™ in (d), ~0.3pAcm™? in (¢) and —0.5pAcm™ in (f),
and a hyperpolarizing current step of amplitude —2pAcm~? and 60ms in duration. Arrows indicate damped

oscillation at the end of the rebound sequence.
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Figure 12. (a) Bifurcation diagram for equations (33) with parameter values given in Appendix 4 and stability of
limit cycle solutions and EPs as indicated in figure 10. (5) An example of rebound bursting following a hyper-
polarizing current step of amplitude —4 pA cm™? and 50 ms in duration with I, = 1 pAcm 2. (¢)—(d) Analysis
of voltage clamp experiment for the model described by equations (33). (¢) For a voltage clamp step from
—90mV to —40mV the clamp current (solid curve) consists of Ix + It + Ikca(r) when the leakage current, 1y, is
subtracted. Dotted curve shows timecourse of Ix. (d) Subtraction of Ix from the current trace shown in (¢) gives
the clamp current for It + Igcar) (solid curve). Also shown separately are It and Igg,T) (dotted curves). (e)
Measurement of /; and I from the clamp currents for It and Igg,) (dotted curves). See §11 for calculations

involving ; and /,.

timecourses of mr(¢) and £7(¢) and is given by:

It = grmy(6)*hr()(v — vca)-

On clamping, from —90mV to —40mV, mr(¢)
changes exponentially from its value before the
clamp, which is mp_(—=90) =0, to my_(—40) =1,
and Ar(¢) changes exponentially from Ar_(—90) =1
to Ar_(—40) = 0, with time constants 7, (—40) and
7, (—40) respectively. Thus the timecourse of I is
given by:

In(t) = gr(1 — exp (=7, (—40)0)°
X exp (—T;Tl(—40)t)(—40 — Uca)-
Knowing the timecourse of It we can obtain the

timecourse of the concentration of intracellular free
calcium ¢ from the differential equation:

= —kIT - kcaﬁ.
Before the clamp It =0 (as mp_(—90) =0) and so
¢ = 0. Therefore ¢(¢) is given by:
11
o(6) = exp (~kcat) | exp (hcus) (~411(9) .
0

Finally the time course of Ixc,(T) is given by:

clt
Ixcarm)(t) = gKaa() ©)

— = (—40 — v ).
ca(r) +¢(2) ( x)

Phil. Trans. R. Soc. Lond. B (1994)

Because kg, < 75,1 (—40) < 7,,5(—40) the timecourse
of ¢(t) eventually decays exponentially with time
constant kgl. As it decays ¢(¢) becomes small so that
KCa(T) +L‘(t) ~ KCa(T) and so IKCa(T)(t) also dCCaYS
with time constant kgl. So from the timecourse of
Ixcar)(t) we can measure kg,.

To obtain £ we note that the timecourses of
Ixca(m)(t) and ¢(t) have maximum values at the
same time tmax- Let 11 = IKCa(T)(tmax), 12 = IT(tmax)
and ¢;nax = ¢(fmax)- Then from the definition of g car)
and the differential equation for ¢ we have:

cmaX
I = grea(m) Kour) + omm (—40 — vg),

0= é‘(l‘max) = _kIZ - kCacmax‘
From this we obtain:

_ _kCaKCa(T) 11
Iy(gkca(ry(—40 —vg) — 1)’

which allows kg, to be estimated provided that we
know gKCa(T) and KCa(T)-

In the argument given above the precise details of
the timecourses of mr(¢) and £1(¢) do not matter and
so the method of estimating & and k¢, applies to both
of the models discussed in § 10. For these two models

the currents /; and Iy are indicated in figures 94 and
12e.

k
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12. CONCLUSION

Over the past decade there has been a rapid
expansion in the number of descriptions of the
electrophysiological properties of different mam-
malian neurons (reviewed by Llinas 1988). In this
paper we have attempted to organize and simplify
some of these descriptions by introducing a classifica-
tion scheme based on the type of bifurcation diagram
produced by a one parameter (vy) family of models.
The bifurcation diagram is experimentally measur-
able and can be related to the properties of the cells.
These include cells in the lateral habenula nucleus
(Wilcox et al. 1989) and nucleus reticularis thalami
(Avanzini et al. 1988; Bal & McCormick 1993). Our
classification could probably be extended to other
neurons such as those of the inferior olivary nucleus
(Yarom 1991) and paraventricular nucleus (Tasker &
Dudek 1991). Further applications will be given in the
last of this series of papers (Hindmarsh & Rose
19945). Our aim has not been to produce a
biophysically exact model for any particular cell,
but to find the underlying dynamical system and
present it in such a way that it can be readily modified
following further experimental results. This led to
the representation of the solutions of the three-
dimensional physiological model on a surface resem-
bling a paraboloid and the introduction of the model
of the model. We have also predicted the outcome of
voltage clamp experiments to determine the para-
meter values of the ¢ equation. Together with the
measurement of Ix, It and I; this should make it
possible to verify the model experimentally.

We introduced the simplified model of the model not
just as purely qualitative model but as an approximation
to the physiological model. In this paper we have used
this model of the model to explain how the system
responds to applied current pulses. In the following
paper (Hindmarsh & Rose 19944) we will use it to
describe resonance analytically, and in the final paper
(Hindmarsh & Rose 19944) we will use it to describe
intrinsic spindling in thalamocortical cells.

This work was supported by the Wellcome Trust.

APPENDIX 1. EQUATIONS AND PARAMETER
VALUES FOR THE PHYSIOLOGICAL MODEL

The equations are:
b=C NIy~ Ix—IL—Ir —Ixcary tho+1+1(1)},
i =7, (0) (moo (2) = m),
b= 7 (0) (koo () — ),
iv= 1 (0) (noo (v) — ),
hr = T/z_Tl(/le(v) ~ hr),
¢ = —kgrmr ()hr(v —vca) — kcac,
where

c=1 HF Cm_2> INa: gNamSh(v - 7}Na)> IK = gKn4
(v—wk), It=grmt (Vhr(v—oc.), I=grLlv—oy),
and Ig ca(r) = gkca(r)(¢/Kea(r) + ) (v — vk)-

Phil. Trans. R. Soc. Lond. B (1994)

For Iy,:

B —(v+29.7)/10
~exp{—(v+29.7)/10} — 1’

Bn(v) = 4exp {—(v+ 54.7)/10},

o ()

a0
meo) = ) + B
T,
) = D+ B
a,(v) = 0.07 exp {—(v + 48)/20},
1
Balv) = exp{—(v+18)/10} + 1’
N a;(v)
holt) = 0y T )
_ T
W= LT R
and T,=0.26, T,=026, gn,=120mScm2,
UNa — 55 mV

For Ik:

_ —(v +45.7)/100
~exp{—(v+45.7)/10} — 1’

B.(v) = 0.125 exp {—(v + 55.7)/80},

00
a,(v) + B.(v)’

Tﬂ
W) = o G

and T, = 0.009, gx = 10mScm™2, vg = —90mV.
For It:

a,(v)

fleo (”)

1

m () =5 + exp{—Ymy (v = Ony — vsep) }
0 1
V) =
Too 1+ CcXp {_')’/zT(U - 0/1-1- + vsep)}
and  y,, =06 mV~1, 0p, =—645mV, y, =

—-0.5mV~1, 0p, = —70mV, ’Th__: =0.045ms™!, gr =
0.6 mScm™2, vg, = 130mV. For the Type D model
Vsep = 0mV.

For IKCa(T):

k=0.001 pMcm=2puA~ ms71, kca = 0.044 ms™1,
gxcam) = 1.2mSem™2, Kgyry = 1pm, vg = —90mV.
For I;:

g1, = 0.25mS em™2 and vy, = =59 mV.

The value of I is —1.35 pA cm™2 and the relevant
values of [ and I(¢) are given in the text and the figure
legends.

The simplifications of this model have the same
parameter values when the cell is not subject to an
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external current with the following changes:
Five-dimensional thalamic model (figure 1d—f):

gKCa(T) =0mS Cm_2.

Three-dimensional model (figures 44,6, 5 and 6a):

gNa = 0mS cm 2.

Two-dimensional thalamic model (figures la—c¢ and
2):

£Na = gkCa(r) = 0mScem ™.

APPENDIX 2. EQUATIONS AND PARAMETER
VALUES FOR THE MODEL OF THE MODEL

The equations for the model of the three-dimensional
physiological model of Type D (defined in Appendix
1), are:

i=—ai+ By — alal@ +7°) — b(z + [Ty /7))%,
j=—pi—aj — a(a(@ +7) — bz + ITs1/¥))7,
2= —yz+y(c(@ +7P) — dE + 7)),

These equations model the physiological model Type
D in the case where the EP is at v = —63.26 mV with
I =0. At this EP the eigenvalues are —a=%:8, —y
where:

a = 0.02098, B=0.26295, v = 0.02089.

Also the values of a, b, ¢ and d are (see text):

a=670000, & =450, ¢=2000, 4 =1300000.

The transformation matrices T, T~! are not
uniquely determined. The values that we used were:

0.00099 0.00625  0.00997
T =] 0.00018 0.29914 —0.10876
—0.00062 0.48187  0.76919

1000 0 —12.96369

T '=| -024868  2.72274 0.38820

0.96379 —1.70570 1.04640

APPENDIX 3. EQUATIONS AND PARAMETER
VALUES FOR THE FOUR-DIMENSIONAL
MODEL

The equations are:
i=C Y~Iya— Ix — I — It — Iyap
= Igca(r) T loxe +1(2)},
i = 1 (1) (noo (v) — ),
bt = by, iy (0) (1, () — ),

¢ = —kIT - kCaC,

Phil. Trans. R. Soc. Lond. B (1994)

where

C=1 HF Cm_2> INa = 8Na mgo(v)(085 - n)(v - 7}Na)a
Ig = ggn*(v —vg), It =3ng%°° (v —vca), I =
gL(v - vL)a INaP = &NaP "N, p (7} - UNa)> and IKCa(T) =
gxca(r)(¢/ Keaer) + ¢)(v — vk ).

For Iy,:
( B _0‘1(1/ +29.7 — O'Na)
a,(v) = exp{—0.1(v+29.7 — on)} — 1’
Bal0) = #exp {~(0+54.7 — ox,)/18},
()
o, (v) + Bn(v)’

and gy, = 10mScm™2, vy, = 55mV, gy, = 10mV.
For Ix:

Moo (v) =

~0.01(v +45.7 — og)
exp{—0.1(v+45.7 —og)} — 1’

B.(v) = 0.125 exp {—(v + 55.7 — 0% )/80},

Qy (1)) =

O
SRXOET XY
1
R OET A0}

and gg = 15mSem™2, vx = —105mV, ¢, = 28.57,
Ok = 10 mV.
For INaP:

a (v) - ——0.1(7) +29.7 — GNaP)
NaPA ™ exp {=0.1(v + 29.7 — opp)} — 1

Brap(v) = 4exp {—(v+ 54.7 — on,p)/18},

anap(v)
MmN, = )
Nar.. () anap(v) + Brap(v)
and gnp = 7mScem™2, vy, = 55mV, on,p = —5mV.
For It:
1
mr,, (v)

T T+ op{—(1= 0, — 1e)/7 8}

1
hTm(U) B 1+ €xXp {(U - B}z-r - Usep)/5 ’

Th, (0) = hr_ (v) exp {(v+ 162.5)/17.8} 4 20,

and gr = ImSem™2, yg, = 120mV, </>;,T =2, 0, =
—65mV, 6, = -79mV.
For I;:

g1. = 0.12mS cm 2, vy, = —70mV.

For Ixcar):
gKCa(t) = 1.2mS em™2, vg = —105mV, k = 0.001 um
em™ 2 A" s, kg, = 0.044 ms™, Koy = 1pm

The relevant values of Iy, 1(¢) and v, are given in
the text and the figure legends.

In the voltage clamp experiment described in § 10,
and shown in figure 956—d, we added.a differential
equation for mr:

sep

mT = ¢mTT;']1:(U)(mT°0 (U) - mT),
where ¢, =5 and:
Ty = mr_(0)(1.7 4+ exp (—(v + 26.8)/13.5)).
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For the nRT model of figure 11 the equations and
parameter values were as above except that vy, =
1.45mV, gnap =6mScm™2, onp = —12mV, gg =
25mScem~? and gy, = 20mS cm™2.

APPENDIX 4. EQUATIONS AND PARAMETER
VALUES FOR THE MODIFIED WANG, RINZEL
AND ROGAWSKI MODEL

The equations are:

b =C"Y~Ir — Ix — I, — Ixcarry + Ipxe + 1(1)},
mry = Tﬁi(v)(mTw(v) —mr),

h=ay(1—h—d)—Bh,

d=By(l —h—d)—agh,

¢ = —klt — kcat,
where C=1pFem™? and Iy = grmdh(v —vc,),
Ix = grnpu(—wk), I =glv—oy) and Igcym) =

gxca(t)(¢/Kcaery +¢) (v — vk).
For IKZ

—0.096(v + 45 + ox)
exp (—0.2(v + 45+ og)) — 1)’

B.(v) = 1.5exp (—(v + 50 + ok )/40),

a(t) = -

a,(v) + B, (v)’

and gg = 5mScm~2, vg = —105mV, og = 15mV.
For I:

a,(v) = (

_ 1
mr, (v) = 1+ exp{—(v+ vy — 0,,)/7.8}

Ty (0) = 0.2mr_(v)
X (1.7 + exp {—(v + vy + 28.8)/13.5),
K = /[0.25 4 exp {(v + vy — 6,,)/6.3}] — 0.5,
a; = 3exp{—(v+ vy + 160.3)/17.8},

pr =K
240
=0.33 ,
72 = 03 0 T on + 37.4)/30)
1
oy = ————ro,
27 (1 +K)
Bs = as K,
and vy =2mV, vg=-85mV, gr=ImScm2

Ve = 120mV, 0, = —63mV, §, = —83.5mV.
For I1:

g1, = 0.1mS em™?, v, = —65mV.

For IKCa(T):
gkea(r) = ImSem™2, g = —105mV, k= 0.001 pm
em 2 pA  ms7, kg, = 0.044 ms™1, Kooty = 1 um.

The relevant values of g, and I(¢) are given in the
text and the figure legends.

Phil. Trans. R. Soc. Lond. B (1994)
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